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Generalized strength of weighted scale-free networks
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An analysis to describe statistical properties of weighted complex networks is proposed. Effective structures
of weighted networks depend on how strongly weights w are paid attention or which weights are relevant to the
network problem. Defining the metaweight w? with a real parameter g, we characterize systematically weighted
complex networks depending on the level of importance of weights. It is found that power-law distribution
functions R,[s(¢)] of metastrengths s(g) defined by s,(¢)=2 J-w?j, where i and j denote node indices for any ¢
are characterized by only three exponents if the weight distribution is independent of network topology. We
also examine the validity of our analytical arguments and the meaning of power-law forms of R,[s(¢)] for

different ¢ values by illustrating some examples.
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I. INTRODUCTION

Networks with more complicated topology than regular or
disordered lattices have been extensively studied to describe
a wide range of complex systems, such as communication
networks [1-3], biological networks [4,5], collaboration re-
lationships [6-8], transportation systems [6,9], ecological
networks [10-13], and networks in condensed matter
[14,15]. Empirical evidences show that most of these real-
world networks share several common properties, namely,
the small-world [16], scale-free [17], and fractal natures [18].
In particular, the scale-free property defined as a power-law
behavior of the degree distribution P(k)ock™ is of crucial
importance because the degree exponent 7y, governs quanti-
tative behaviors of physical quantities on a scale-free net-
work. These features reflect topological aspects of networks,
in which all nodes and edges are treated as depersonalized
elements. In most of real-world networks, however, nodes
and edges are not equivalent and multivalued quantities
(weights) are assigned on them. Recently, much attention has
been paid to networks with weighted edges, because proper-
ties of networks are deeply related to how weights distribute
in networks [6,19-25]. In these works, various quantities de-
fined in unweighted networks have been naturally extended
for weighted networks. For example, the degree k; of the
node 7 in an unweighted network is extended to the strength
s;=2;w;;, where w;; is the weight assigned to the edge (i, ).
It has been found that many of weighted complex networks
have power-law distributions of weights [Q(w)ow™ %] and
strengths [R(s) o« s~%] [6,20]. The power-law strength distri-
bution implies that most of real networks exhibit the scale-
free property even in a sense of weighted networks.

In previous works on weighted networks, interests have
been concentrated on connectivity of nodes and edges with
large values of w and s. This is, however, not sufficient to
describe the whole nature of weighted networks. It would be
also important to know how weak edges (with small weights)
construct the network. Inversely, in some cases, we might
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need to study the network structure with emphasizing edges
with large weights more strongly than done by weights them-
selves. In a trading network of companies, for example, the
network structure comprised of small companies connected
to each other by weak edges is crucial because the entire
economy strongly depends on numerically major small com-
panies. Another example is a power grid network whose
nodes and edges are generators or transformers and transmis-
sion lines, respectively. Regarding currents / on edges as
weights, we can obtain information about statistical proper-
ties of the current network. When the nature of the power-
supply network is required, however, edges with large
weights should be more strongly emphasized than what is
done by weights I, because the power is proportional to I°.
Therefore, statistical properties of a weighted network de-
pend on how strongly we pay attention to weights.

In this paper, we propose a method to analyze the intrinsic
nature of weighted complex networks. By introducing the
metaweight defined by w?j, where ¢ is a real parameter, we
characterize systematically structural features of networks
depending on how strongly weights are emphasized. We
show that only three exponents are required to characterize
power-law distribution functions of metastrengths defined in
the next section for any ¢ if the weight distribution is inde-
pendent of network topology. Namely, in such a case, the
exponent characterizing the metastrength distribution func-
tion for arbitrary value of g can be obtained by these three
exponents. Furthermore, the validity of our analytical argu-
ments and the meaning of power-law forms of metastrength
distributions for different ¢ values are examined by illustrat-
ing some examples.

This paper is organized as follows. In Sec. II, we give
definitions of the metaweight and the metastrength. It is also
shown in this section that only three independent exponents
can characterize the network in the case that the weight dis-
tribution is not related to network topology. We present ex-
amples of metaweight analyses in Sec. III by demonstrating
several models of weighted complex networks and a real-
world network of stock price correlations. Finally, the con-
clusions are given in Sec. IV. The application of the meta-
weight analysis to the weighted scale-free property, treated in
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this paper, is an example of this analysis. We emphasize wide
applicability of the metaweight analysis in this section.

II. METAWEIGHT ANALYSIS
A. Metaweight and metastrength

In order that the scale-free property of a weighted com-
plex network is more systematically studied by considering
how significantly weighted edges contribute to the network
structure, we introduce the metaweight defined by w4, where
w is an original weight assigned to an edge and ¢ is a real
parameter. For |g|~0, weights in the network do not influ-
ence significantly statistical properties of the network, and
we can concentrate on topological aspects of the network at
¢=0. Analyzing w? with ¢>1 enables us to emphasize in-
tense weights more strongly than done by original weights.
On the contrary, for ¢ <0, weak edges with small weights
are emphasized. In the example of the trading network, a
weighted structure dominated by small companies with weak
edges can be evaluated by analyzing w? with ¢<0. There-
fore, it becomes possible by introducing metaweights to
study statistical properties of inherent structures embedded in
a given weighted network. Although statistical properties of
powers of weights have been discussed for a specific net-
works model by Mukherjee and Manna [21], our arguments,
differently from their paper, aim to reveal systematically the
intrinsic nature of general weighted networks. The idea of
the metaweight analysis seems to resemble that of the mul-
tifractal analysis [26] in which fractal dimensions of spatial-
ity distributed measures are determined with paying attention
to how significantly measures contribute to the distribution
by introducing gth power of measures. Regardless of the
apparent similarity, however, the metaweight analysis for
weighted complex networks is largely different from the
multifractal analysis as we will show below.

Among many statistical quantities characterizing
weighted complex networks, in this paper, we discuss the
distribution of metastrengths defined by

slg) = wi, (1)

where w;; is the original weight assigned to the edge connect-
ing the ith node to the jth. Here we assume that the weight
wj; is always positive. If the distribution function of meta-
strengths obeys a power law, the power-law exponent y,(g)
is a function of g. This g-dependent metastrength exponent
v,(q) characterizes the weighted scale-free network in more
detail than described only by the conventional strength ex-
ponent 7,.

B. Topology independent weight distribution

In order to clarify the functional form of the metastrength
exponent y,(g), we consider a situation that weights on edges
are distributed independently of network topology. Applying
the argument by Dorogovtsev and Mendes [27] to power-law
metastrength distributions, we show that only three metas-
trength exponents for suitable ¢ provide v,(¢g) for any q.
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Let us denote the distribution functions of degree k, meta-
weight w, and metastrength s(g) by P(k), Q,(w’), and
Rq[s(q)], respectively. We assume that these distribution
functions have power-law forms for large arguments,
namely,

P < k% (k> 1), )
0, (w?) o (wh) ™D (wi> 1), 3)
R [5()]s(q)™%P [s(q) > 1]. (4)

Allowing divergent exponents, our conclusions hold even for
exponential distribution functions. Generating functions of
these distributions are defined by [28]

X(z) = 2 7°X(x), (5)

where X represents each of the distribution functions P, Qq,
and R,. Assuming that the asymptotic form of X(x) is pro-
portional to x~7 for large x and replacing the summation in
Eq. (5) by an integral, the generating function X(z) has a
term proportional to (1—z)?~' [29]. It should be noted that
this term is non-analytic at z=1 if the exponent 7 is nonin-
teger [30]. Therefore, from the asymptotic behaviors Egs.
(2)-(4), the generating functions can be expanded around z
=1 as

Pz)=1- 2 aP(1-2)"=b"(1 -z)"", (6)

n>0

0,2) =1~ 2 a%(1 —2)" = b%(1 —)WD-1 (7)

n>0

R(@=1-2 ayu(1-2)"=b (1 =)@ (8)
n>0

Since the generating function of the sum of independent
stochastic variables is generally the product of the generating
functions of these variables [28], the generating function of
the metastrength distribution is given by I?q(z)
=Zk[Q~q(z)]"P(k) if stochastic variables w? on edges are in-

dependent of each other. Thus, using Eq. (5), we have

R,()= L0, ()] ©)

Substituting Egs. (6)—(8) into Eq. (9), the right-hand side of
Eq. (9) is

ﬁ[éq(Z)] =1-> af[ > a,%i(l —2)"+b%(1 - Z)Vw(@)—1:|"

n>0 m=>0

- bP[ > a%(1 - z)" + b%(1 — z) WD ] wl
m>0

(10)

Since the asymptotic behaviors of P, O, and R, are inter-
ested, only the analytic and nonanalytic leading terms of ex-
pansions around z=1 are argued here. Neglecting higher or-
der nonanalytic terms than O[(1-z) %(@-1] the second term
of the right-hand side of Eq. (10) becomes
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E af[ E a,%q(l - z)m]n + abeq(l —7)w(@-1,

n>0 m>0

On the contrary, the third term of Eq. (10), which gives only
nonanalytic terms, is expanded in different ways depending
on the value of ,(q). If ¥,(q)>2, 2,,~0a2(1-z)" is larger
than 5%(1-z)"@-1 for z~1 and the third term of Eq. (10)
is expanded as

third term = b*| >, aZ4(1 - z)" et
m>0
" E (Y= D(%=2) (%=1
prt I
" |: bQ’I(l _ Z)Vw(q)—l :|l'

En>0ar%2q(1 - Z)n

Within the lowest order of (1-z), this term is approximated
by a%ab”(1-2)%"!, while the nonanalytic term of the second
term of Eq. (10) is afh%(1-z)"@D~!, Therefore, the lowest

order nonanalytic term of f’[Q}(z)] is proportional to (1
—z)minln1.%(@-1] Comparing this with the nonanalytic term
of Eq. (8), we have

73(61) = mln[ Yk YW(Q)] (1 l)

for y,,(g) > 2. On the other hand, in the case of v,,(q) <2, the
third term of Eq. (10) is expanded as

third term = bF[p%(1 — 7)™ @-17%1

%> (Y= 1)('Yk_l'2)"'(')’k_l)
1=0 !

En>0agq(1 - Z)n !
b(1 —z) @1 |°

(

min[ y,2]
1
min ’Yk’l - _(’y»_v+ 1):|
B q

V@) =9\ %

1
min| ¥, 1+ —(y}, - 1)}
q

min[ y,2]

\ L
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where the lowest order term is b2ab"(1—z) " DIn(@-1] The
same argument with the above leads to

¥(q) = min{y,(q), (v, = Dly(q) = 1]+ 1}, (12)

for v,(q) <2. At v,,(q)=2, two relations (11) and (12) be-
comes equivalent, namely,

%(CI) = l’l'llIl[ 7]02] at 7w(q) =2. (13)

It should be noted that the relation y,(q)=(y,— 1) ,.(q)
—1]+1 holds only when v,,(g)<2 and vy,<2. This is be-
cause 7,,(¢g) is always larger than unity due to the normaliza-
tion condition of Q,(w%) and the quantity (y,—1)[,(q)-1]
+1-%,(@)=(%=2)[7,(¢)—1] can be negative only when
v<2. From the relations (11) and (12), we can say that the
metastrength distribution R [s(¢)] obeys the power law with
the exponent v, if the distribution Q,(w%) decays exponen-
tially [ y,,(q) — o] for large w?. If both distribution functions
P(k) and Q,(w?) are exponential, R [s(¢)] has also an expo-
nential form. In the case that two distributions obey power
laws, the metastrength distribution also obeys a power law
with the exponent vy,(q) given by Egs. (11) and (12), or (13).

It is important to notice that the ¢ dependence of v,,(g) is
described by exponents characterizing the original weight
distribution Q,(W)[=Q;(W)]. If Qre(w) has the form

W_y:' (W > 1) s

Qorg(W) e wed), (14)

the asymptotic behavior of Q,(w?) for w?>1 is proportional
to w14 for ¢>0 and w177 for ¢<0 because of the
relation Q,(w9)=Q,(w)|dw/dw4|. Therefore, the exponent
¥.(q) defined by Eq. (3) is given by v,,(q)=1+(y;,—1)/q for
g>0 and y,(q)=1-(y,+1)/g for ¢<0. Combining these
relations with Egs. (11)—(13), we have

, 1 1 _ ~
min l—g(ywﬂ),l—;(yk—l)(vw1)} (g<-v,-1,

(g=-7,-1,

(=% -1<¢<0),

(g=0), (15)
(0<g<7%,-1),

(g=7,-1),

1 1
min| 1 +;(7$— 1),1 +;(7k_ (v, - 1)} (g>7,-1.

Therefore, we can determine the exponent y,(g) by three exponents ¥, ¥, and vy, characterizing the weighted network if

weights are distributed independently of network topology.
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FIG. 1. Metastrength exponent y,(¢) for the BA model with
randomly distributed weights as a function of the parameter g. The
numerical result (dots) is obtained for 10> BA networks with 10°
nodes. Dotted and dashed lines represent 7y, and v,,(q), respectively.
The metastrength exponent ,(g) predicted by Eq. (15) is shown by
thick gray line. Thick dashed line indicates y,(¢q)=2.94 which is the
usually observed numerical value of the degree exponent 7y, for
finite networks of the BA model.

III. EXAMPLES

In order to demonstrate the metaweight analysis and con-
firm the validity of the argument for topology independent
weight distributions, we calculate y,(¢) numerically for four
examples. The first example is the Barabasi-Albert (BA)
model [17] with weighted edges. Weights are randomly dis-
tributed on edges with a probability distribution Q,,(w). The
BA model is a representative growing scale-free network and
has the degree exponent y,=3. In this weighted BA model,
the strength distribution is correlated with network topology.
For example, hubs have large strengths because all weights
of many connected links contribute to their strengths. How-
ever, the weight distribution itself in the weighted BA model
is obviously independent of network topology. Thus, the
metastrength exponent y,(¢) can be predicted by Eq. (15).
Here we choose the weight distribution function as

_ Qo
Qorg(w) = 1+ W4 > (16)

where Q, is the normalization constant. This function be-
haves as Qg (w)cw™ for w>1 and Qg (w)cw for w<1.
Therefore, the exponents in Eq. (14) are /=3 and 7y, =1.
For these exponents, ;, v, and y,, Eq. (15) leads to

.
12 (g<-1).
q
y(q) =93 (1=g=-1), (17)
2
1+— (g>1).
L q

In order to confirm the validity of the above prediction,
we have prepared 10> BA scale-free networks with weights.
Each network contains 10° nodes. The ¢ dependence of the
metastrength exponent measured numerically for these net-
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works is plotted by dots in Fig. 1, as well as theoretically
predicted line (thick gray line). We employed the maximum
likelihood estimation method (MLEM) [31] to evaluate the
metastrength exponent y,(g) for all the examples in this sec-
tion (namely, dots in Figs. 1-3 and 5). The MLEM has two
different versions depending on whether data [s,(¢) in our
case] are continuous or discrete. It should be noted that we
must use the discrete version of the MLEM for ¢=0 while
the continuous version must be employed for ¢ # 0. The nu-
merical result agrees with the theoretical line. However, a
slight discrepancy between numerical data and the theoreti-
cal prediction appears around crossing points between 7y, and
v,,(q) (dotted and dashed lines). This is because the second

and third terms of Eq. (10) almost equally contribute to Eq(z)
when v, and v,,(q) become close to each other, and then the
distribution R,[s(g)] takes a definite power-law form only for
very large s(g). Therefore, it is difficult to determine 7y,(g) by
numerical calculations for finite-size networks.

The second example is the weighted scale-free network
model proposed by Barrat, Barthélemy, and Vespignani
(BBV) [32]. Although we scattered weights independently of
network topology in the previous model, weights in realistic
networks generally vary as network growths and it is not
obvious that weight distributions are independent of topol-
ogy. The BBV model is a model whose weights are tuned
during the network growth. This model is constructed by the
following way. We start with a complete graph with a small
number (m;) of nodes and edges of the initial weight wg. At
each time step, a new node with m edges having the weight
wy is added and connected to m existing nodes with the
probability II;=s;/X;s;, where s; is the strength of the ith
node. Then, the strength of node i is increased by an extra
amount J. The extra strength is distributed over all the edges
of the node i in the proportion of w;;/s;. The resulting net-
work after a long time becomes a weighted scale-free net-
work possessing power-law distribution functions of degree,
weight, and strength. The exponents vy, ¥, and vy, of this
network are theoretically predicted as y,=7y,=(45+3)/(26
+1) and vy,=2+1/6. In our example, we choose §=1/2.
Therefore, y,=7,=5/2 and v, =4. The distribution function
of w for small weights does not take a power-law form in
this model. Thus, the exponent v, is regarded as infinity. If
the distribution of w is independent of topology of this net-
work, the metastrength exponent y,(q) is given by

5
> (g=2),
¥s(q) = (18)
1+— (¢g>2).
q

The theoretical line given by Eq. (18) is indicated by thick
gray line in Fig. 2. The metastrength exponent y,(g) calcu-
lated numerically for 10> BBV networks with 10 nodes is
plotted by dots. The agreement of numerical data with the
thick gray line suggests that the weight distribution is inde-
pendent of network topology.

In general, if weights on a network distribute indepen-
dently of network topology, the average strength (s(k)) over
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FIG. 2. Metastrength exponent vy,(g) for the BBV model with
6=1/2 and m=2 as a function of the parameter ¢g. The numerical
result (dots) is obtained for 10> BBV networks with 10° nodes.
Dotted and dashed lines represent 7y, and v,,(q), respectively. The
metastrength exponent 7y,(q) predicted by Eq. (15) is shown by
thick gray line. Slight deviations between numerical results close to
g=0 and the analytical line are due to our numerical estimation
scheme of 7y,(q). We employed the continuous version of the
MLEM for g # 0 while data are almost discrete near g=0. The inset
shows the distribution function Q< (w) for ky=100, 200, 300, and

wo

nodes of degree k does not change by exchanging weights
randomly. This implies that (s(k)) keeps its value by replac-
ing w;; by the average weight w and then (s(k))=wk. Since
the strength s; of the ith node is proportional to the degree k;
in the BBV model, the linear relation (s(k))=wk holds also
for this model. The contrapositive of the above statement
deduces that the weight distribution of a weighted network
depends on network topology if (s(k)) is a nonlinear function
of k. However, since the converse proposition is not always
true, it is not obvious whether the weight distribution in the
BBV model exhibiting the linear relation of {s(k)) is inde-
pendent of network topology. If the distribution function
O, (w) of weights on edges connected to nodes of degree k
depends on k but gives the same average value w for differ-
ent k’s, the (total) weight distribution function depends on
network topology while (s(k))=wk. Thus, there is a possibil-
ity that the weight distribution depends on topology even if
(s(k)) is proportional to k. Our results shown in Fig. 2 deny
such a possibility for the BBV model. In order to confirm
this, we calculated numerically distribution functions
Qk<k0(W) of weights on edges connected to nodes of degrees
smaller than k. If the distribution function Q,(w) depends on
k, the function Q< (w) should also depend on k. Results of
Qk<k0(w) for the same ensemble of networks with that for
Fig. 2 are shown in the inset of Fig. 2. The distribution
functions for ky=100, 200, and 300 agree well with the dis-
tribution function for the entire set of edges. This clearly
shows that weights are scattered in an uncorrelated way to
network topology in the BBV model.

Next, we show that the metastrength exponent y,(¢g) de-
viates from Eq. (15) when the weight distribution depends on
network topology. Networks with weight distributions corre-
lated to their topology can be obtained by realizing the non-
linear relation (s(k)) < k#(8+ 1). In order to construct such a
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1,(Q)

FIG. 3. Metastrength exponent y,(g) for the PSGN model with
m=1 and m’=3 as a function of the parameter ¢g. The numerical
result (dots) is obtained for 200 PSGN’s with 10° nodes. Dotted and
dashed lines represent vy, and v,,(q), respectively. The metastrength
exponent y,(g) given by Eq. (15) is shown by thick gray line. The
inset shows the average strength (s(k)) for degree k. The solid line
in the inset indicates (s(k)) o k32,

nonlinear network, we employ the preferential strengthening
growing network (PSGN) model proposed by Bianconi [33].
In this model, we start with a set of a few connected nodes
with weight w, on edges. At each time step, a new node with
m edges of weight w,, attaches to existing m nodes according
to the probability II;=k;/Xk;. At the same time, we choose
other m’ edges and increase their weights by w,. The choice
of the links is done first by choosing a node with the prob-
ability II;=s;/2;s; and then by choosing one of the edges of
the selected node i with the probability II;;=w;;/ Eleyiwﬂ,
where v; is the set of nearest neighbor nodes of the ith node.
Values of the degree exponent and the weight exponent for
the PSGN model are theoretically predicted as y,=3 and
¥i=(m+2m’)/m’. In this model, the strength of the node i is
determined by its degree k; as

k; (m' <m),
s; 1 ki In(k;) (m' =m), (19)

k?m'/(m+m’) (m! > m)

Therefore, the exponent B[=lim;_.., In{s(k))/Ink] is 1 for
m<m' and 2m’'/(m+m') for m' >m. For numerical simula-
tions, we employed m=1 and m’=3. In this case, y,=7/3
and 8=3/2. As shown in the inset of Fig. 3, our numerical
result indicates the average strength (s(k)) proportional to
k*2. The metastrength exponent y,(g) calculated numerically
for this model is shown in Fig. 3. In contrast to previous two
cases, the profile of y,(q) for topology-dependent distribu-
tions of weights deviates from the theoretical expression
given by Eq. (15).

As the final example, we demonstrate the metaweight
analysis for a real-world network. The treated system is a
correlation network of stock price fluctuations. In this net-
work, nodes represent companies and each company is con-
nected to all other companies, namely, the network forms a
complete graph. The weight w;; between the ith and jth com-
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FIG. 4. Weight distribution of the stock price cross-correlation
network.

panies is defined as the cross-correlation matrix [34,35],
namely,
L (GG)-(GXG) 00
ij— ’
T AUGH = (GIIGH (G
where (- ) means a temporal average over a given time in-
terval 7 and G; is the relative return defined by

G)=5(0 -3 500 e

Here S,(z) is the stock price change of the ith company after
a time o, that is,

S(t)=InY(t+ &) —In Y1), (22)

and Y;(¢) is the stock price at time 7. It has been already
reported that the distribution functions of weights and
strengths of stock price cross-correlation networks have
power-law forms [35].

We examine the cross-correlation network composed of
10 companies listed on the First Section of the Tokyo Stock
Exchange. The time interval T for the temporal average in
Eq. (20) is chosen as T=2 years. Results are averaged over
five networks for different time periods from January, 1994
to April, 2005. The resulting weight distribution, Fig. 4,
shows a power-law form with 'yfvz4.5 for w>w, while it
becomes constant (7, =0) for w<w. Since the network is a
complete graph, the degree exponent 7y, can be treated as
infinity and the weight distribution is obviously independent
of the network topology. Therefore, Eq. (15) gives

1
q

3.5
1+— (¢g>0).
q

The numerically calculated metastrength exponent y,(g) is
plotted as a function of ¢ in Fig. 5 with the theoretical line
given by Eq. (23). The analytical prediction well describes
the numerical result. As shown in this example, a weighted
network with complete graph topology should possess the
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FIG. 5. Metastrength exponent vy,(g) for the stock price cross-
correlation network as a function of the parameter ¢g. The numerical
result (dots) is obtained for 10> companies listed on the First Sec-
tion of the Tokyo Stock Exchange. Dashed lines represent v,,(q).
The metastrength exponent y,(q) given by Eq. (15) is shown by
thick gray lines.

scale-free nature both for positive and negative ¢’s unless ;,
and v, diverge. These examples in this section clearly dem-
onstrate that the present analysis provides a powerful tool for
studying statistical properties of weighted complex networks.

IV. CONCLUSIONS

We have proposed a method to analyze statistical proper-
ties of weighted complex networks. Introducing the meta-
weight defined by w?, we characterized systematically struc-
tural features of networks depending on how strongly
weights are emphasized. It has been found that only three
exponents are required to characterize the metastrength dis-
tribution function R,[s(q)] for any g if the weight distribu-
tion is independent of network topology. In such a case, the
exponent characterizing R,[s(g)] for an arbitrary value of ¢
can be calculated by three exponents 1y, ¥}, and vy, . Further-
more, in order to confirm our analytical arguments, we per-
formed numerical calculations for four examples, namely,
the weighted BA model, the BBV model, the PSGN model,
and the stock price cross-correlation network as a real-world
complex network. These examples show the efficiency of the
present method and the validity of our arguments.

In this paper, we concentrated on metastrength distribu-
tions of weighted networks. The concept of the metaweight
can be applied to many other statistical quantities character-
izing weighted networks. Extending the weighted clustering
coefficient [6] to the metaweight version, we can define the
metaclustering coefficient C(g) by (1/N)Zja;aa;(w];
+wi)/[2(k;=1)s,(q)], where a;; is the (i,j) element of the
binary adjacency matrix and s;(¢) is the metastrength defined
by Eq. (1). If C(¢<0) is larger than C(g>0), the network is
densely connected mainly by weak edges and sparsely con-
nected by strong edges, and vice versa. Therefore, the analy-
sis of the metaclustering coefficient reveals detailed relations
between network topology and the weight distribution. An-
other candidate of possible applications of the metaweight
analysis is the module decomposition by using metaweights.
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Defining the metabetweenness centrality based on shortest
distances of metaweighted paths, a weighted network can be
divided into communities depending on ¢. This may make it
possible to classify nodes in the network from continuously
changing viewpoints by varying the value of g. Recently, it
has been reported that the detailed modular structure of a
weighted complex network can be elucidated by introducing
artificially extended weights [36]. The module decomposi-
tion based on metaweights might be an alternative way of
such studies. As seen from these possible applications, the
concept of the metaweight introduced in this paper has a
great potential to analyze weighted complex networks.
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